public abstract class PassiveAggressiveRegression extends PassiveAggressive implements RegressionLearningAlgorithm
[CrammerJLMR2006] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz and Yoram Singer Online Passive-Aggressive Algorithms. Journal of Machine Learning Research (2006)
PassiveAggressive.Policy| Modifier and Type | Field and Description |
|---|---|
protected float |
epsilon |
protected UnivariateRegressionFunction |
regressor |
c, label, policy| Constructor and Description |
|---|
PassiveAggressiveRegression() |
| Modifier and Type | Method and Description |
|---|---|
float |
getEpsilon()
Returns epsilon, i.e.
|
UnivariateRegressionFunction |
getPredictionFunction()
Returns the regressor learned during the training process
|
void |
learn(Dataset dataset)
It starts the training process exploiting the provided
dataset |
UnivariateRegressionOutput |
learn(Example example)
Applies the learning process on a single example, updating its current model
|
void |
setEpsilon(float epsilon)
Sets epsilon, i.e.
|
computeWeight, getC, getLabel, getLabels, getPolicy, reset, setC, setLabel, setLabels, setPolicyclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitduplicate, getLabels, reset, setLabelsprotected UnivariateRegressionFunction regressor
protected float epsilon
public float getEpsilon()
public void setEpsilon(float epsilon)
epsilon - the epsilon to setpublic UnivariateRegressionFunction getPredictionFunction()
RegressionLearningAlgorithmgetPredictionFunction in interface LearningAlgorithmgetPredictionFunction in interface RegressionLearningAlgorithmpublic void learn(Dataset dataset)
LearningAlgorithmdatasetlearn in interface LearningAlgorithmlearn in class PassiveAggressivedataset - the training datapublic UnivariateRegressionOutput learn(Example example)
OnlineLearningAlgorithmlearn in interface OnlineLearningAlgorithmexample - the instance to be exploited in the learning processexample before the updating stepCopyright © 2014 Semantic Analytics Group @ Uniroma2. All rights reserved.