public class LibLinearRegression extends Object implements LinearMethod, RegressionLearningAlgorithm, BinaryLearningAlgorithm
Further details can be found in:
[Fan et al, 2008] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A Library for Large Linear Classification, Journal of Machine Learning Research 9(2008), 1871-1874. Software available at
The original LIBLINEAR code:
http://www.csie.ntu.edu.tw/~cjlin/liblinear
The original JAVA porting (v 1.94): http://liblinear.bwaldvogel.de
| Constructor and Description |
|---|
LibLinearRegression() |
LibLinearRegression(double c,
double p,
String representationName) |
LibLinearRegression(Label label,
double c,
double p,
String representationName) |
| Modifier and Type | Method and Description |
|---|---|
LibLinearRegression |
duplicate()
Creates a new instance of the LearningAlgorithm initialized with the same parameters
of the learningAlgorithm to be duplicated.
|
double |
getC() |
Label |
getLabel() |
List<Label> |
getLabels()
Returns the labels representing the concept to be learned.
|
double |
getP() |
UnivariateLinearRegressionFunction |
getPredictionFunction()
Returns the regressor learned during the training process
|
String |
getRepresentation()
Returns the representation this learning algorithm exploits
|
void |
learn(Dataset dataset)
It starts the training process exploiting the provided
dataset |
void |
reset()
Resets all the learning process, returning to the default state.
|
void |
setC(double c) |
void |
setLabel(Label label) |
void |
setLabels(List<Label> labels)
Sets the labels representing the concept to be learned.
|
void |
setP(double p) |
void |
setRepresentation(String representation)
Sets the representation this learning algorithm will exploit
|
public LibLinearRegression(Label label, double c, double p, String representationName)
label - The regression property to be learnedc - The regularization parameterp - The The epsilon in loss function of SVRrepresentationName - The identifier of the representation to be considered for the
training steppublic LibLinearRegression(double c,
double p,
String representationName)
c - The regularization parameterrepresentationName - The identifier of the representation to be considered for the
training steppublic LibLinearRegression()
public double getC()
public void setC(double c)
c - the regularization parameterpublic double getP()
public void setP(double p)
p - the epsilon in loss functionpublic String getRepresentation()
LinearMethodgetRepresentation in interface LinearMethodpublic void setRepresentation(String representation)
LinearMethodsetRepresentation in interface LinearMethodrepresentation - the representation to setpublic void setLabels(List<Label> labels)
LearningAlgorithmsetLabels in interface BinaryLearningAlgorithmsetLabels in interface LearningAlgorithmlabels - the labels representing the concept to be learnedpublic List<Label> getLabels()
LearningAlgorithmgetLabels in interface BinaryLearningAlgorithmgetLabels in interface LearningAlgorithmpublic Label getLabel()
getLabel in interface BinaryLearningAlgorithmpublic void setLabel(Label label)
setLabel in interface BinaryLearningAlgorithmpublic void learn(Dataset dataset)
LearningAlgorithmdatasetlearn in interface LearningAlgorithmdataset - the training datapublic LibLinearRegression duplicate()
LearningAlgorithmduplicate in interface LearningAlgorithmpublic void reset()
LearningAlgorithmreset in interface LearningAlgorithmpublic UnivariateLinearRegressionFunction getPredictionFunction()
RegressionLearningAlgorithmgetPredictionFunction in interface LearningAlgorithmgetPredictionFunction in interface RegressionLearningAlgorithmCopyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.