public abstract class PassiveAggressiveRegression extends PassiveAggressive implements RegressionLearningAlgorithm
[CrammerJLMR2006] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz and Yoram Singer Online Passive-Aggressive Algorithms. Journal of Machine Learning Research (2006)
PassiveAggressive.Policy| Modifier and Type | Field and Description | 
|---|---|
| protected float | epsilon | 
| protected UnivariateRegressionFunction | regressor | 
c, label, policy| Constructor and Description | 
|---|
| PassiveAggressiveRegression() | 
| Modifier and Type | Method and Description | 
|---|---|
| float | getEpsilon()Returns epsilon, i.e. | 
| UnivariateRegressionFunction | getPredictionFunction()Returns the regressor learned during the training process | 
| void | learn(Dataset dataset)It starts the training process exploiting the provided  dataset | 
| UnivariateRegressionOutput | learn(Example example)Applies the learning process on a single example, updating its current model | 
| void | setEpsilon(float epsilon)Sets epsilon, i.e. | 
computeWeight, getC, getLabel, getLabels, getPolicy, reset, setC, setLabel, setLabels, setPolicyclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitduplicate, getLabels, reset, setLabels, setPredictionFunctionprotected UnivariateRegressionFunction regressor
protected float epsilon
public float getEpsilon()
public void setEpsilon(float epsilon)
epsilon - the epsilon to setpublic UnivariateRegressionFunction getPredictionFunction()
RegressionLearningAlgorithmgetPredictionFunction in interface LearningAlgorithmgetPredictionFunction in interface RegressionLearningAlgorithmpublic void learn(Dataset dataset)
LearningAlgorithmdatasetlearn in interface LearningAlgorithmlearn in class PassiveAggressivedataset - the training datapublic UnivariateRegressionOutput learn(Example example)
OnlineLearningAlgorithmlearn in interface OnlineLearningAlgorithmexample - the instance to be exploited in the learning processexample before the updating stepCopyright © 2018 Semantic Analytics Group @ Uniroma2. All rights reserved.