| Modifier and Type | Class and Description | 
|---|---|
| class  | SimpleDatasetA SimpleDataset that represent a whole dataset in memory. | 
| Modifier and Type | Method and Description | 
|---|---|
| static Dataset | SimpleDataset. extractExamplesOfClasses(Dataset dataset,
                        List<Label> labels)This method extracts examples of given  labelsfromdataset | 
| Dataset | Dataset. getShuffledDataset() | 
| Dataset[] | SimpleDataset. nFolding(int n)Returns  ndatasets. | 
| Dataset[] | SimpleDataset. nFoldingClassDistributionInvariant(int n)Returns  ndatasets. | 
| Dataset[] | SimpleDataset. split(float percentage)Returns two datasets created by splitting this dataset accordingly to
  percentage. | 
| Dataset[] | SimpleDataset. splitClassDistributionInvariant(float percentage)Returns two datasets created by splitting this dataset accordingly to
  percentage. | 
| Modifier and Type | Method and Description | 
|---|---|
| void | SimpleDataset. addExamples(Dataset datasetToBeAdded)Add all the examples contained in  datasetToBeAdded | 
| static Dataset | SimpleDataset. extractExamplesOfClasses(Dataset dataset,
                        List<Label> labels)This method extracts examples of given  labelsfromdataset | 
| Modifier and Type | Method and Description | 
|---|---|
| void | LearningAlgorithm. learn(Dataset dataset)It starts the training process exploiting the provided  dataset | 
| void | PassiveAggressive. learn(Dataset dataset) | 
| void | MultiEpochLearning. learn(Dataset dataset) | 
| Modifier and Type | Method and Description | 
|---|---|
| void | BudgetedLearningAlgorithm. learn(Dataset dataset) | 
| Modifier and Type | Method and Description | 
|---|---|
| void | LibLinearLearningAlgorithm. learn(Dataset dataset) | 
| Constructor and Description | 
|---|
| Problem(Dataset dataset,
       String reprentationName,
       Label label) | 
| Modifier and Type | Method and Description | 
|---|---|
| void | OneClassSvmClassification. learn(Dataset trainingSet) | 
| void | BinaryNuSvmClassification. learn(Dataset trainingSet) | 
| void | BinaryCSvmClassification. learn(Dataset trainingSet) | 
| Modifier and Type | Method and Description | 
|---|---|
| protected float[] | LibCSvmSolver. getCSvmAlpha(Dataset trainingSet)Get the initial weight for the future Support Vectors | 
| SvmSolution | LibSvmSolver. solve(int l_,
     Dataset dataset,
     float[] p_,
     int[] y_,
     float[] initial_alpha)It solves the SMO algorithm in [CC Chang & CJ Lin, 2011]
 
 min 0.5(\alpha^T Q \alpha) + p^T \alpha
 
 y^T \alpha = \delta  y_i = +1 or -1 0 <= alpha_i <= Cp for y_i = 1 0 <= alpha_i <= Cn for y_i = -1 Given: Q, p, y, Cp, Cn, and an initial feasible point \alpha l is the size of vectors and matrices eps is the stopping tolerance solution will be put in \alpha, objective value will be put in obj | 
| Modifier and Type | Method and Description | 
|---|---|
| void | OneVsOneLearning. learn(Dataset dataset)This method will cause the meta-learning algorithm to learn 
 N*(N-1)/2 classifiers, where N is the number of classes in the dataset. | 
| void | OneVsAllLearning. learn(Dataset dataset)This method will cause the meta-learning algorithm to learn 
 N classifiers, where N is the number of classes in the dataset. | 
| Modifier and Type | Method and Description | 
|---|---|
| void | PassiveAggressiveClassification. learn(Dataset dataset) | 
| Modifier and Type | Method and Description | 
|---|---|
| void | PegasosLearningAlgorithm. learn(Dataset dataset) | 
| Modifier and Type | Method and Description | 
|---|---|
| void | Perceptron. learn(Dataset dataset) | 
| Modifier and Type | Method and Description | 
|---|---|
| List<Cluster> | ClusteringAlgorithm. cluster(Dataset dataset)It starts the clustering process exploiting the provided
  dataset | 
| Modifier and Type | Method and Description | 
|---|---|
| List<Cluster> | KernelBasedKMeansEngine. cluster(Dataset dataset) | 
| Modifier and Type | Method and Description | 
|---|---|
| void | EpsilonSvmRegression. learn(Dataset dataset) | 
| Modifier and Type | Method and Description | 
|---|---|
| void | PassiveAggressiveRegression. learn(Dataset dataset) | 
Copyright © 2014 Semantic Analytics Group @ Uniroma2. All rights reserved.